Blog

EXCELLERAT successfully closes its first chapter

The first funding phase of EXCELLERAT has come to an end on 31st May 2022. Over the past three and a half years, the Centre’s consortium consisting of 13 European partners provided expertise on how data management, data analytics, visualisation, simulation-driven design and co-design could benefit engineering, in particular in the aerospace, automotive, energy and manufacturing sectors. Overall, EXCELLERAT’s work strongly focused on improving computational efficiency, dynamic mesh adaptation, load balancing, scalable data handling, usability (visualisation and workflow tools), as well as investigating novel architectures and opportunities for co-design and developing more efficient numerical methods.

Read More »

White Paper: The EXCELLERAT Best Practice Guide

The EXCELLERAT Best Practise Guide is an outcome of EXCELLERAT, the European Centre of Excellence for Engineering Applications. The project aimed at establishing the foundation of a central European knowledge and competence hub for all stakeholders in the usage and exploitation of high-performance computing (HPC) and high-performance data analytics (HPDA) in engineering. Having worked together throughout the 42 months of the initial funding phase, we are presenting this Best Practice Guide of ways and approaches to execute engineering applications on state of the art HPC-systems in preparation for the exascale era.

Read More »

White Paper: FPGAs for accelerating HPC engineering workloads – the why and the how

Running high performance workloads on Field Programmable Gate Arrays (FPGAs) has been ex-plored but is yet to demonstrate widespread success. Software developers have traditionally felt a significant disconnect from the knowledge required to effectively exploit FPGAs, which included the esoteric programming technologies, long build times, and lack of familiar software tooling. Fur-thermore, for the few developers that invested time and effort into FPGAs, from a performance perspective the hardware historically struggled to compete against latest generation CPUs and GPUs when it came to Floating Point Operations per Second (FLOPS).

Read More »

White Paper: Empowering Large-Scale Turbulent Flow Simulations With Uncertainty Quantification Techniques

An effective, robust simulation must account for potential sources of uncertainty. Computational fluid dynamics (CFD), in particular, has to deal with many uncertainties from various sources. The real world, after all, forces many kinds of uncertainties upon engineering components – everything from changes in numerical and computational parameters to uncertainty in initial and boundary conditions and geometry. No matter how expensive a flow simulation is, the uncertainties have to be assessed. In CFD, uncertainty is inevitable. But it presents us with a question: how do you know which uncertainties to expect and quantify without using an enormous amount of computing power?

Read More »

EXCELLERAT Conference: Impressions, Takeaways, and How to Watch

Nearing the end of its 3.5 year run, EXCELLERAT hosted a two-day online conference last week to present the industrial and broader European perspective on the project’s first run. Called “EXCELLERAT: Enabling Exascale potentials for engineering applications,” it showcased the impact, innovations, and tools that resulted from the work of the European Centre of Excellence for Engineering Applications.

Read More »

Data management workflow for HPC – SSC Data Management Workflow Portal

Organisations and smaller industry partners today face various problems in dealing with high performance computing (HPC) computations, HPC in general, or even access to HPC resources. Hence, the EXCELLERAT Data Management Service develops best practices and provides support for managing the large amounts of data generated and used in technical HPC applications.

Read More »

On the technical debt of high-performance scientific software

High-performance scientific software must overcome two specific challenges: scientific validation, and performance on bleeding-edge and short-lived hardware. Success in each requires time, expertise, and cumulative experience over many failed attempts. Thus, engineering software developers are mostly experts in physical modelling or in high-performance computing (HPC) and rarely experts in the management of technical debt.

Read More »